

Renninger Scan法による 六方晶極性結晶c面極性判定

大鉢忠^{1,2},佐藤祐喜²,竹本菊郎¹,羽木良明³,和田元²,吉門進三² 界面反応研究所¹,同志社大学理工学部²,住電半導体株式会社³ *tohachi@irel.jp*

- 1) JCCG-46 予稿集 28a-A08 (2017).
- 第10回ナノ構造・エピタキシャル成 長講演会 Poster F24.

背景(良質基板結晶評価)

実験法(Renninger Scan法)

Renninger Scan法

XRMD測定試料設定

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館

IRE Laboratory

h-GaN(ウルツ鉱型結晶)の対称要素

XRMD測定試料設定

GaN 平方根表示

GaN

多重回折 A領域120°基本ピーク 平方根表示

多重回折 60°基本ピーク(A₊領域:0°~60°)

A_領域

多重回折 60°鏡映ピーク(A_領域:-60°~0°)

GaN

仙台市戦災復興記念館

IRE Laboratory

JCCG-47 第47回結晶成長国内会調

2018年10月31日,

GaN 多重回折強度

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館

IRE Laboratory

Peak No.	Indexed Peaks by Blasnig & Krost	Phi [degree]	Relative Intensity [%]	refrection type	
1	P1	0.87	15.0	(3-1-10)/(-3211)	
2		2.47	11.5		
3	P2	2.87	2.6	(3-1-2-2)/(-3123)	
4	P3	3.81	60.8	(1-10-1)/(-1102)	(1-100) (-1101)
5		4.45	34.4		多重回折の強度100 %の一番強
6		4.73	13.3		いピーク
7	P5	10.15	24.1	(02-21)/(0-220)	8_peak (1-100)/(-1101)
8	P6	13.65	100.0	(1-100)/(-1101)	Bragg反別の56.0%強度は Cの20=32.388° (ω=16.194°)ピーク 01-10 反射
9		17.13	11.9		Bragg反射の100%強度は cの2θ=36.853°
10	P7	18.99	12.1	(12-33)/(-1-23-2)	(ω=18.427°)ピーク 01-11 反射
11		19.3			
12	P8	19.67	46.0	(01-13)/(0-11-2)	(0001)
13	P9	22.67	15.5	(3-120)/(-31-21)	(-1101) 禁制反射0001
14	P10	23.55	19.3	(02-23)/(0-22-2)	(1-100) 2 θ =17.0856°(ω=8.5428°) 56.0 %

 Renninger Scanパターン強度は結晶内部の複数結晶面による多重回折のため、GaN基板の

 結晶性の評価に有効に利用できる.

 1) JCCG-46予稿集 28a-A08(2017)

Fig.3 GaN [Ga] &[N] Renninger Scan Pattern 0-60 ^O. GaN [Ga]&[N] 極性

JCCG-47 第47回結晶成長国内会議

仙台市戦災復興記念館

IRE Laboratory

2018年10月31日,

Fig.4 GaN [Ga] & [N] 30-60 ° 14 peaks.

極性

Sapphire[Al]&[O]

JCCG-47 第47回結晶成長国内会議

仙台市戦災復興記念館

IRE Laboratory

2018年10月31日,

Fig.1 Sapphire[Al]&[O] Renninger Scan Pattern -60-60^O.

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館

IRE Laboratory

Sapphire[Al]&[O] Renninger Scan Pattern -30-30⁰.

Fig.2 Sapphire[Al]&[O] 0-30° 27 peaks.

禁制反射 Phiスキャン (Line focus)

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館

IRE Laboratory

JCCG-47第47回結晶成長国内会議 c面GaN単結晶の20-のBragg回折ピークと禁制反射^{018年10月31日, 仙台市戦災復興記念館} IRE Laboratory

GaN FCPパターンのX線波長依存性

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館 *IRE Laboratory*

 $\phi 30°基本領域のCu-K_β(0.139 nm:16個)と$ K_{α1}(0.154 nm:14個)による GaN c面基板の0001禁制反射のFCPスキャンパターン

> 謝辞: AichiSRの竹田美和所長, 砥綿 真一氏のご協力に感謝いたします.

まとめ

JCCG-47 第47回結晶成長国内会議 2018年10月31日, 仙台市戦災復興記念館 IRE Laboratory

- Renninger Scanパターン(FCP スキャン)強度と多重回折角度は
 逆格子点とエバルト球との交点によるため平行X線の発散角、X
 線波長に依存する
 - Renninger Scanパターン(FCP スキャン)強度は結晶内部の複数 結晶面による多重回折のため、入射角度の小さな禁制反射での 測定のため、表面近くのGaN基板の結晶性評価に有効である
 - 極性面により構造因子が異なるために、結晶内部の複数格子面でのBragg回折による多重回折の強度に差が生じる -> 遠回り反射と呼ばれる禁制ブラッグ反射の位置に観察される

強度が極性に依存するために極性が判定できた

Renninger Scanパターン(FCP スキャン)強度はPhiにより急峻に 変わるため、Phiを明らかにしない場合に結晶の設定角度により2θ ーωの禁制反射が観測されるのに偶然性が入る