

小発散角入射X線平行ビームによるGaN基板表面 0001対称禁制反射6回対称Phiスキャンパターン

大鉢忠¹, 佐藤祐喜², 竹本菊郎¹, 羽木良明³, 吉門進三², 和田元² 界面反応成長研究所¹, 同志社大学理工学部² 住電半導体材料(株)³ T. Ohachi¹, Y. Sato², K. Takemoto¹, Y. Hagi¹, S. Yoshikado², M. Wada² Interface Reaction Epitaxy Laboratry Department of Electrical Engineering, Doshisha University ², and Sumiden Semiconductor Materials Co., Ltd. ³ *tohachi@irel.jp*

 XRDによるGaN結晶評価 粉末結晶 エピタキシャル成長薄膜 バルク単結晶 ● X線回折法 平行ビーム法 集中法 (Bragg-Brentano) **Renninger Scan法** 多重回折 (遠回り反射) 対称禁制反射(Phi Scan)

[1] M. Renninger, Z. Phys. 106, 141 (1937).
[2] M. Menninger, Act. Cryst. 8 597 (1955).
[3] 稲葉克彦, リガクジャーナル, 44(2) 7-15 (2013)
[4] J.B Bläsing and A. Krost, phys. stat. sol.,
(a) 201(4), R17-R20 (2004)
[3] 三宅静雄,『X線の回折』(朝倉書店)316-320 (1969)
[4] 松本崧生, 鉱物学雑誌 16(1)99~108(1983)

GaN多重回折測定先行研究

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

[3] 稲葉克彦, リガクジャーナル, 44(2) 7-15 (2013)

[3b]稲葉克彦、「X線回折による機能性酸化物薄膜の評価」、2015年第76応用物理秋季学術講演会@名古屋

[4] J.B Bläsing and A. Krost "X-ray multiple diffraction (Umweganregung) in wurzite-type GaN and ZnO epitaxial layers ", phys. stat. sol., (a)201(4), R17-R20 (2004).

Fig. 1 Renninger scan of GaN(0001)/Si(111) with constant Bragg angle for the forbidden (0001) Bragg reflection $2\theta = 17.075^{\circ}$.

GaN粉末の20-の Bragg回折ピーク

X線多重回折現象[XRMD](遠回り反射)

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

多重回折の強度100%の一番強いピーク8_peak (1-100)/(-1101)

Bragg反射の100%強度は cの2θ=36.853°(ω=18.427°)ピーク01-11 反射 Bragg反射の56.0%強度は cの2θ=32.388°(ω=16.194°)ピーク01-10 反射

X-ray multiple diffraction (XRMD) (Umweganregung)

[1] M. Renninger, Z. Phys. 106, 141 (1937).
[2] M. Menninger, Act. Cryst. 8 597 (1955).
[3] 稲葉克彦, リガクジャーナル, 44(2) 7-15 (2013)

[4] J.B Bläsing and A. Krost, phys. stat. sol.,
(a)201(4), R17-R20 (2004)
[3] 三宅静雄,『X線の回折』(朝倉書店)316-320 (1969)
[4]松本崧生, 鉱物学雑誌 16(1)99~108(1983)

C面GaN単結晶の20-のBragg回折ピークと禁制反射

Intensity (cps) Phi = 6.2 ° **Phi = 13.3** ° Phi = 13.0 ° 2Theta (--)

禁制反射 Phiスキャン (Line focus)

C面GaN単結晶の20-のBragg回折ピークと禁制反射

Intensity (cps) Phi = 6.2 ° **Phi = 13.3** ° **Phi = 13.0** ° 2Theta (--)

h-GaN(ウルツ鉱型結晶)結晶構造

h-GaN(ウルツ鉱型結晶)の対称要素

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

基板を60°の6つの領域に分けます A-, A₊, B₋, B₊, C₋, C₊ 6領域 - と+は鏡映

Collimator + Xe detector

Example of a Parallel Plate Collimator PreFIX Module

Cross slit + X-ray lens (0.3°divergence)

PW3146/00, PW3146/25 or PW3146/60 Poly-capillary Lens 8 mm

Monocapillary 0.3° divergence

Slit 0.27°

Collimator Slit for a Parallel Beam Collimator

Graphite monocrometer

Flat Crystal Monochromator

Example of a Mono-capillary PreFIX Module

XRMD測定試料設定

XRMD測定軸立て (φ)

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

h-GaN {0002} FCP Scan データ

XRMD測定軸立て (ω)

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

X線レンズで0.3mm x 0.3mm スリットでの GaN 0002反射でののスキャン軸立て 発散角は0.3°

XRMD測定軸立て $(z + \chi)$

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

2つのピークは受光Collimetorとslitによる

30°の測定範囲の中心で煽り角χの最適化による軸立て 結晶軸とφ回転軸が一致する

XRMD測定軸立て ($\phi = 0^\circ$)

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

[1-100]方向を $\varphi = 0^{\circ}$ とするため[1-101]の非対称面 ($\chi = 61.9^{\circ}$)の煽り角でPhiスキャンにより軸立て

鏡映対称面

鏡映対称面

バックグラウンドの周期性

A,B,C,領域 バックグラウンド

180°領域 バックグラウンド

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

基板に対して入射方向180°と裏側のバックグラウンドの比較

対数表示

多重回折 A領域120°基本ピーク 平方根表示

多重回折現象によるRenninger Scan ピーク

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

(-1101)

 a_2

 a_2

mp1とmp2の基本領域での2つの面による 表1 多重回折現象を示す面の組み合わせを示す. [2]

		Peak No.	Indexed Peaks by Blasnig & Krost	Phi [degree]	Relative Intensity [%]	refrection type	8_peak
	mp1	1	P1	0.87	15.0	(3-1-10)/(-3211)	
		2		2.47	11.5		a ₃
		3	P2	2.87	2.6	(3-1-2-2)/(-3123)	
		4	P3	3.81	60.8	(1-10-1)/(-1101)	^(2,100) a ₁
		5		4.45	34.4		
		6		4.73	13.3		(1-100)
	mp2	7	P5	10.15	24.1	(02-21)/(0-220)	(-1101) C
		8	P6	13.65	100.0	(1-100)/(-1101)	
		9		17.13	11.9		a ₃
		10	P7	18.99	12.1	(12-33)/(-1-23-2)	(-1101)
		11		19.3	15.5		a ₁
		12	P8	19.67	46.0	(01-13)/(0-11-2)	(-1101
		13	P9	22.67	15.5	(3-1-20)/(-3121)	
		14	P10	23.55	19.3	(02-23) /(0-22)	

 A_+ 領域

A_領域

多重回折 60°鏡映ピーク(A_領域:-60°~0°)

多重回折 30°基本ピーク(A_{+R}領域:30°~60°)

多重回折30°ピーク A_{+L}領域

30°回反鏡映ピーク(A_{-R}領域:_-30°~0°)

8番多重回折ピークによる結晶品質評価

8番多重回折ピークによる結晶品質評価

JCCG-46, 27-29 November 2017, Hamamatsu Doshisha University

8番ピーク近辺の測定 バックグラウンド測定 青色 0.02°ステップで1秒計測 1min 15sec 赤色 0.02°ステップで50秒計測 1hr

8番ピーク近辺のバックグラウンド測定(短時間測定)

赤色 ピーク測定は0.02°ステップで1秒計測 青色 バックグラウンド測定は0.1°ステップで50秒計測

8番多重回折ピークによる結晶品質評価

HY.

強度の一番強い8番多重回折ピークに よる結晶品質評価

8番のピークは(10-10)と(-1101)の強度の強い2つの反射面 による多重回折強度

バックグラウンドの値({0001} 多重回折の生じない場合の強度

4試料で比は A: 2.55 x 10³ B: 2.15 x 10³ C: 932 D: 604

結晶内部の複数格子面でのBragg回折による多重
 回折により0001禁制ブラッグ反射の位置に観察され
 る遠回り反射 (Renninger Scan)を利用してGaN基板
 結晶を評価した.

●利用した0001反射は0002反射の半分の入射角で ある事から、より結晶表面近くの結晶内部の品質評 価に対応している.

●デバイス用GaN単結晶基板表面の評価法として有 効で価値ある手段となる.